

Root Approximation

Ching-Han Chen I-Shou University 2006-03-27

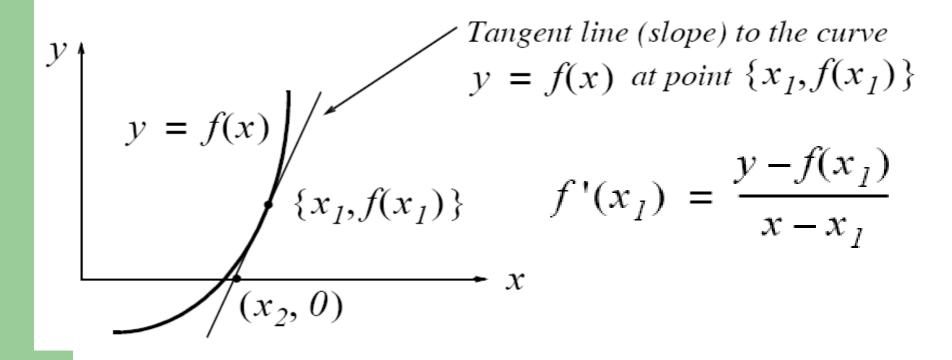
Bisection method

f < 0 at $x =$	f > 0 at $x =$	mid point	f (mid point)
0.0	1.5	0.75	+
0.0	0.75	0.375	—
0.375	0.75	0.5625	_
0.5625	0.75	0.65625	—
0.65625	0.75	0.70313	—
0.70313	0.75	0.72656	_
0.72656	0.75	0.73828	_
0.73828	0.75	0.74414	+
0.73728	0.74414	0.74121	+

Algorithm

```
// x1:left point //x2:right point
fx = 0.5*(x1+x2); // fx : mid-point
y = fx - cos(fx);
if(y<0)x1=fx;</pre>
if(y>0)x2=fx;
if(fabs(y) < 1e - 10)
{
     root=fx;
     cout<<"root at "<<root<<endl;
     break;
```

Ex1.


Use the bisection method to find the root of :

$$y = x - \cos(x)$$

Newton-Raphson method

- Newton's (or Newton-Raphson) method is an iterative (repetitive procedure) method that can be used to approximate the roots of any linear or nonlinearequation of any degree.
- Assume that the slope is neither zero nor infinite. Then, the slope (first derivative) at x=x1 is

Newton-Raphson method

Newton-Raphson method

$$y - f(x_1) = f'(x_1)(x - x_1)$$

The slope crosses the X-axis at $x=x^2$ and y=0. Since this point [x^2 , $f(x^2)$] = (x^2 , 0) lies on the slope line, By substitution,

Algorithm

- $// f(x) = x^2-x-1$
- fx = x*x x 1.0;
- // f'(x) = 2x
- df = 2*x 1.0;
- dx = fx/df;
- x = x dx;
- if (fabs(dx) < 1e-10)root=x;</pre>

Ex.2

Approximate root of the polynomial equation:

$$y = f(x) = x^3 - 7x^2 + 16x - 12$$

Hint: fx = pow(x,3) - 7*pow(x,2) + 16*x - 12;df = 3*pow(x,2) - 7*x + 16;

Ex.3

Approximate one real root of the non-linear equation

$$f(x) = x^2 + 4x + 3 + sinx - xcosx$$

Try at least three initial values.

Hint : x = -0.89....